JOM 23911PC

Preliminary Communication

Electrophilic additions to the bimetallic silyl complexes $\left[\left(\mathrm{OC}_{3}\right)_{3}(\mathrm{MeO})_{3} \mathrm{Sij}\right.$ -$\left.\mathrm{Fe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{Pt}(1,5-\mathrm{COD})\right]$
 ($\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}$). Crystal structure of $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PCy}_{2}\right)\left(\mu-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{2} \mathrm{Pt}-\right.$ $(1,5-\mathrm{COD})]\left[\mathrm{PF}_{6}\right]\left(\mathrm{Cy}=c-\mathrm{C}_{6} \mathrm{H}_{11}\right)$ *

Pierre Braunstein, Michael Knorr and Thomas Stährfeldt

Laboratoire de Chimie de Coordination, Associé au CNRS (URA 0416), Uni,versité Louis Pasteur, 4 rue Rlaise Pascal, F-67070 Strasbourg Cedex, (France)

André DeCian and Jean Fischer
Laboratoire de Cristallochimie et de Chimie Structurale, URA 424 CNRS, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex (France)

(Received May 26, 1993)

Abstract

Reactions of the heterobimetallic complexes $\left[(\mathrm{OC})_{3}(\mathrm{MeO})_{3} \mathrm{Si}\right) \stackrel{\mathrm{Fe}(\mu-}{ }$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (1) and [(OC) $\left.\left.)_{3}(\mathrm{MeO})_{3} \mathrm{Si}\right\} \mathrm{Fe}(\mu-\mathrm{PR} 2) \mathrm{Pt}(1,5-\mathrm{COD})\right]$ ($3 \mathrm{a}, \mathrm{R}=\mathrm{Ph}$) with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ result in cleavage of the $\mathrm{Fe}-\mathrm{Si}$ bond and formation of the dihydrido complexes $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PPh}_{2}\right)(\mu\right.$ $\overline{\mathrm{H}})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{BF}_{4}\right]$ (2) and $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PR}_{2}\right)(\mu-\mathrm{H})_{2} \mathrm{Pt}(1,5-\right.$ $\mathrm{COD})\left[\mathrm{BBF}_{4}\right]$ (4), respectively. Reactions of 3 a or $\mathbf{3 b}(\mathrm{R}=\mathrm{Cy})$ with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) A u\right]\left[\mathrm{PF}_{6}\right]$ required 2 equiv. of the electrophile to give the clusters $\left[\left(\mathrm{OC}_{3} \mathrm{Fc}\left(\mu-\mathrm{PR}_{2}\right)\left(\mu-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right)_{2} \mathrm{Pt}(1,5-\mathrm{COD})\right]\left[\mathrm{PF} \mathrm{F}_{6}\right]\right.$ (5a, $\mathrm{R}=$ $\mathrm{Ph} ; \mathbf{5 b}, \mathbf{R}=\mathrm{Cy}$). These were fully characterised and the structure of 5b was determined by X-ray diffraction: crystals are monoclinic, space group $P 2_{1} / n, a=22.479(6), b=26.781(8), c=10.254(3) \AA$, $\beta=102.94(2)^{\circ}, U=6016.1 \AA^{3}$ and $Z=4$. This is the first structural determination of a heterobimetallic complex carrying two Au-fragments. The $\mathrm{Fe}-\mathrm{Pt}$ bond (2.715(3) \AA) is bridged by a $\mu-\mathrm{PCy}_{2}$ group and by two $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ fragments. No $\mathrm{Au}-\mathrm{Au}$ interaction is observed (4.333(1) \AA).

Heterodinuclear metal-metal bonded complexes of the transition metals containing a single bridging unit, such as a $\mu-\mathrm{PR}_{2}$ ligand, are particularly suitable for investigating the site-selectivity of reactions with electrophilic reagents [1]. Reactions involving an electron-

^[Correspondence to: Professor P. Braunstein. * Dedicated to Professor E.O. Fischer on the occasion of his 75th birthday, with our sincere congratulations and warmest wishes.]

rich moiety $\mathbf{M}-\left(\mu-\mathrm{PR}_{2}\right)-\mathbf{M}^{\prime}$ may occur at \mathbf{M} or \mathbf{M}^{\prime}, at the metal-metal bond or even at the metal-(μ-P) bond [1d]. The bridging ligand holds the metals in close proximity, allowing study of various bimetallic effects that could otherwise not be observed (in case of fragmentation), without shielding the metal centres and decreasing the reactivity of the complex. This may occur when two or more bridging units are present. Cases in which the electrophile simply adds to the dinuclear core should be distinguished from those in which one of the metals carries a ligand, generally anionic, that reacts or is split by the electrophile, often resulting in more complex reactions and molecular rearrangements (eg. propene elimination from an allyl complex in the presence of an acidic hydrogen). Here we describe the reactions of (trimethoxy)silyl ironplatinum complexes with the electrophiles H^{+}and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)^{+}$, which lead to the splitting of the $\mathrm{Fe}-\mathrm{Si}$ bond with formation of new bonds between the metal and the electrophile.

Protonation of $\left[(\mathrm{OC})_{3}\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right\} \mathrm{Fe}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] (1) [2] with an excess of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ occurred with loss of the $-\mathrm{Si}(\mathrm{OMe})_{3}$ ligand (most likely as $\mathrm{FSi}(\mathrm{OMe})_{3}$), as revealed by ${ }^{1} \mathrm{H}$ NMR and FAB^{+}mass spectroscopic methods. The cationic dihydride complex $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})_{2} \mathrm{Pt}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ (2) was isolated in quantitative yield (eqn. (1)).

The bridging position of the two equivalent hydrides was deduced from the ${ }^{1} \mathrm{H}$ NMR spectrum, which displays a symmetrical doublet of doublets of doublets in the highfield region, owing to coupling to $\mu-\mathrm{P}(34 \mathrm{~Hz})$, to $\mathrm{P}_{\text {trans }}(36 \mathrm{~Hz})$ and to $\mathrm{P}_{\text {cis }}(10 \mathrm{~Hz})$, flanked by Pt satellites [3]. The coupling to $\mu-\mathrm{P}$ is similar to that in 4 (40 Hz) (see below). The ${ }^{1} J(\mathrm{PtH})$ value of 200 Hz is indicative of a bridging position of the hydrides, since it is intermediate between the typical values of ${ }^{1} J(\mathrm{PtH})$ and ${ }^{2} J(\mathrm{PtH})$ reported for bimetallic $\mathrm{Fe}-\mathrm{Pt}$ systems [4]. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]$ NMR spectrum displays three mutually coupled sets of resonances for the phosphido-bridge $\left(\delta=162.6,{ }^{2} J\left(\mathrm{P}_{\text {trans }} \mathrm{P}\right)=251 \mathrm{~Hz},{ }^{2} J\left(\mathrm{P}_{\text {cis }} \mathrm{P}\right)=11 \mathrm{~Hz}\right.$,

 numbering scheme.
$\left.{ }^{1} J(\mathrm{PtP})=1930 \mathrm{~Hz}\right)$, the $c i s-\mathrm{PPh}_{3}$ ligand $(\delta=22.8$, ${ }^{2} J\left(\mathrm{PP}_{\mu-\mathrm{P}}\right)=11 \mathrm{~Hz},{ }^{2} J\left(\mathrm{PP}_{\mathrm{PPh}_{3}}\right)=11 \mathrm{~Hz},{ }^{1} J(\mathrm{PtP})=3718$ $\mathrm{Hz})$ and the trans $-\mathrm{PPh}_{3}$ ligand $\left(\delta=12.4,{ }^{2} J\left(\mathrm{PP}_{\mu-\mathrm{P}}\right)=\right.$ $251 \mathrm{~Hz},{ }^{2} J\left(\mathrm{PP}_{c i s}\right)=11 \mathrm{~Hz},{ }^{1} J(\mathrm{PtP})=2460 \mathrm{~Hz}$. On the basis of the NMR data, the ligand arrangement in 2 must be very similar to that in the closely related complex $\left[(\mathrm{OC})_{3} \stackrel{\mathrm{Fe}\left(\mu-\mathrm{PCy}_{2}\right)(\mu-\mathrm{H})_{2} \mathrm{Pt}}{ }\left(\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$, recently prepared by protonation of $\left[(\mathrm{OC})_{3} \mathrm{Fe}(\mu-\right.$ $\left.\overline{\mathrm{PCy}_{2}}\right)(\mu-\mathrm{H}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}$] [5]. However, there is a marked difference in the position and intensities of its IR $\nu(\mathrm{CO})$ vibrations $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(1998 \mathrm{~m}, 1973 \mathrm{~m}, \mathrm{br})$ compared to those of $2(2079 \mathrm{~s}, 2027 \mathrm{~m}, 2012 \mathrm{~m})$.

Although the 1,5-COD-substituted complexes 3a,b, prepared according to eqn. (2), are less electron-rich than the PPh_{3}-substituted derivative 1, the metal-metal bond in these complexes may be protonated in the same manner.

3e, $\mathrm{R}=\mathrm{Ph}$
3b, R = Cy
Cleavage of the metal-silicon bond also occurs to give $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{H})_{2} \mathrm{Pt}(1,5-\mathrm{COD})\right]\left[\mathrm{BF}_{4}\right]$ (4), the structure of which could be unambiguously deduced from the spectroscopic data (Scheme 1) [6,7]. There was no indication of protonation of the 1,5-COD
ligand, although this reaction may lead to stable allyltype complexes [8].

When 2 equiv. of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right]\left[\mathrm{PF}_{6}\right]$ were added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3 , the cationic heteronuclear clusters $\left[(\mathrm{OC})_{3} \mathrm{Fe}\left(\mu-\mathrm{PR}_{2}\right)\left\{\mu-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{2} \mathrm{Pt}(1,5-\mathrm{COD})\right]-$ $\left[\mathrm{PF}_{6}\right](\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}) 5$ were formed after 10 h in quantitative yield [9]. When a $1: 1$ ratio of the starting materials was used, only 50% of 3 was consumed to give 5. A product of type $\left[(\mathrm{OC})_{3}\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right\} \mathrm{Fe}\left(\mu-\mathrm{PR}_{2}\right) \mathrm{K} \mu-\mathrm{Au}-\right.$ $\left.\left.\left(\mathrm{PPh}_{3}\right)\right\} \mathrm{Pt}(1,5-\mathrm{COD})\right]\left[\mathrm{PF}_{6}\right]$ was never observed. The crystal structure of $5 \mathrm{~b}(\mathrm{R}=\mathrm{Cy})$ was determined by X-ray diffraction [10] and an ORTEP view is shown in Fig. 1; selected bond distances and angles are pre-

Scheme 1.

TABLE 1. Selected interatomic distances (${ }^{\circ}$) and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 b}$

$\mathrm{Au}(1)-\mathrm{Au}(2)$	$4.333(1)$	$\mathrm{Pt}-\mathrm{Fe}$	$2.715(3)$
$\mathrm{Au}(1)-\mathrm{Pt}$	$2.821(1)$	$\mathrm{Fe}-\mathrm{P}(1)$	$2.197(6)$
$\mathrm{Au}(1)-\mathrm{Fe}$	$2.614(3)$	$\mathrm{Pt}-\mathrm{C}(16)$	$2.18(2)$
$\mathrm{Au}(2)-\mathrm{Pt}$	$2.875(1)$	$\mathrm{Pt}-\mathrm{C}(17)$	$2.22(2)$
$\mathrm{Au}(2)-\mathrm{Fe}$	$2.576(3)$	$\mathrm{Pt}-\mathrm{C}(20)$	$2.38(2)$
$\mathrm{Au}(1)-\mathrm{P}(2)$	$2.298(5)$	$\mathrm{Pt}-\mathrm{C}(21)$	$2.35(2)$
$\mathrm{Au}(2)-\mathrm{P}(3)$	$2.284(5)$	$\mathrm{Pt}-\mathrm{P}(1)$	$2.229(5)$
$\mathrm{Fe}-\mathrm{C}(13)$	$1.70(3)$		
$\mathrm{Fe}-\mathrm{C}(14)$	$1.77(2)$		
$\mathrm{Fe}-\mathrm{C}(15)$	$1.82(3)$		$99.07(3)$
$\mathrm{Fe}-\mathrm{Pt}-\mathrm{P}(1)$	$51.6(2)$	$\mathrm{Au}(1)-\mathrm{Pt}-\mathrm{Au}(2)$	$54.81(6)$
$\mathrm{Pt}-\mathrm{Fe}-\mathrm{P}(1)$	$52.7(1)$	$\mathrm{Fe}-\mathrm{Pt}-\mathrm{Au}(2)$	$65.75(7)$
$\mathrm{Fe}-\mathrm{P}(1)-\mathrm{Pt}$	$75.6(2)$	$\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(2)$	$59.44(6)$
$\mathrm{Fe}-\mathrm{Pt}-\mathrm{Au}(1)$	$56.31(6)$	$\mathrm{Fe}-\mathrm{Au}(2)-\mathrm{Pt}$	$113.2(1)$
$\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(1)$	$63.90(7)$	$\mathrm{Au}(1)-\mathrm{Fe}-\mathrm{Au}(2)$	$10.4(5)$
$\mathrm{Fe}-\mathrm{Au}(1)-\mathrm{Pt}$	$59.78(6)$	$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C}(16)$	$107.4(7)$
$\mathrm{C}(13)-\mathrm{Fe}-\mathrm{C}(14)$	$96(1)$	$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C}(17)$	$100.4(7)$
$\mathrm{C}(13)-\mathrm{Fe}-\mathrm{C}(15)$	$99(1)$	$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C}(20)$	$161.2(6)$
$\mathrm{C}(14)-\mathrm{Fe}-\mathrm{C}(15)$	$99(1)$	$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C}(21)$	$160.5(6)$
$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(15)$	$151.6(8)$		

sented in Table 1. The $\mathrm{Fe}-\mathrm{Pt}$ bond is bridged by a $\mu-\mathrm{PCy}_{2}$ group and by two $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ fragments. The propeller-like core structure of $\mathbf{5 b}$ is represented in Fig. 2 and is best described as consisting of three triangles sharing the $\mathrm{Pt}-\mathrm{Fe}$ edge. The dihedral angles between the $\mathrm{Fe}-\mathrm{Pt}-\mathrm{P}(1)$ and the $\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(1)$ and $\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(2)$ planes are 114.5° and 111.0° respectively, while that between $\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(1)$ and $\mathrm{Pt}-\mathrm{Fe}-\mathrm{Au}(2)$ is 134.6°. There is no direct $\mathrm{Au}-\mathrm{Au}$ interaction, and the interatomic separation of $4.333(1) \AA$ is similar to that observed in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left\{\mu-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right][4.304(2) \AA][11]$. This is in contrast to $\left[\left(\mathrm{OC}_{4} \mathrm{~W}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{K}(\mu-\mathrm{Au}-\right.\right.$
$\left.\left(\mathrm{PPh}_{3}\right)\right)_{2} \mathrm{~W}(\mathrm{CO})_{4}$], in which an $\mathrm{Au}-\mathrm{Au}$ distance of 2.749(2) \AA was accompanied by a lengthening of the W-W distance to $3.332(1) \AA$ [12]. The structure of $\mathbf{5 b}$ may be compared with those of $\left[\mathrm{Cl}(\mathrm{OC})_{3} \stackrel{\mathrm{Fe}(\mu-\mathrm{P}-}{ }\right.$ $\left.\mathrm{Cy}_{2}\right) \mathrm{Pt}-\left(\mathrm{PEt}_{3}\right)_{2}$] [5] and [(OC$)_{3} \mathrm{Fe}\left(\mu-\mathrm{PCy}_{2}\right)(\mu-\mathrm{H}) \mathrm{Pt}-$ $\left(\mathrm{PEt}_{3}\right)_{2}$] [4b] which contain a similar $\mathrm{Pt}(\mu-\mathrm{P}) \mathrm{Fe}$ triangle. The $\mathrm{Pt}-\mathrm{Fe}$ distance of $2.715(3) \AA$ is in the usual range for this bond [13]. The angles $\mathrm{Fe}-\mathrm{Au}(1)-\mathrm{Pt}$ and $\mathrm{Fe}-\mathrm{Au}(2)-\mathrm{Pl}$ of $59.78(6)^{\circ}$ and $59.44(6)^{\circ}$, respectively, are similar to the $\mathrm{M}-\mathrm{Au}-\mathrm{Pt}$ angles in the complexes $\left[\left(\mathrm{HCy}_{2} \mathrm{P}\right)(\mathrm{CO}) \mathrm{Pt}\left(\mu-\mathrm{PCy}_{2}\right)\left(\mu-\mathrm{Au}\left(\mathrm{PPh}_{2}\right)\right] \mathrm{W}(\mathrm{Cp})(\mathrm{CO})_{2}\right]$ $\left[60.3(1)^{\circ}\right][1 \mathrm{a}]$ and $\left[\mathrm{Cp}(\mathrm{OC})_{2} \mathrm{~W}\left(\mu-\mathrm{PPh}_{2}\right)\left\{\mu-\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}-\right.$ $\left.{ }_{\mathbf{P}} \mathrm{f}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO}) \mathrm{W}(\mathrm{Cp})(\mathrm{CO})_{2}\right] \quad\left[59.7(1)^{\circ}\right] \quad[1 \mathrm{c}]$. The $\mathrm{Pt}-\mathrm{Au}$ distances of $2.821(1)$ and $2.875(1) \AA$ are very close to those in the latter two complexes and are in the usual range found for this bond [1a,14]. The $1,5-$ COD ligand is bound to Pt in the usual boat conformation [15]. The geometry at the Pt centre is best described as severly distorted square planar with the olefinic $\mathrm{C}=\mathrm{C}$ bonds approximately trans to ($\mu-\mathrm{P}$) and trans to the middle of the $\mathrm{Au}(1) \mathrm{Au}(2)$ unit, respectively. The structure of $\mathbf{5 b}$ appears to be the first reported for an $\mathrm{MM}^{\prime} \mathrm{Au}_{2}$ cluster [14,16]. The isolobal analogy between $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$and the proton successfully relates complexes 4 and 5 .

The metal-silicon bond in $\mathbf{3}$ can be considered as a useful synthetic tool which allows, after its cleavage, further addition and increase in cluster nuclearity [17]. Furthermore, complexes 3-5 are potential precursors to a variety of heterometallic complexes since they contain the readily displaced $1,5-\mathrm{COD}$ ligand. Preliminary results have already shown that 3a reacts with 1 equiv. of $\left[\mathrm{HFe}\left\{\mathrm{Si}(\mathrm{OMe})_{3}\right\}(\mathrm{CO})_{3}\left(\eta^{1}-\mathrm{dppm}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Fig. 2. Perspective view of the core structure of the cation of $\mathbf{5 b}$.
to give the $\mathrm{Fe}_{2} \mathrm{Pt}$ complex 6 which contains two silyl ligands and a hydride (eqn. (3)) [18].

This dppm-assisted synthesis involves displacement of the $1,5-\mathrm{COD}$ ligand and oxidative-addition of the $\mathrm{Fe}-\mathrm{H}$ bond.

Supplementary material available

Tables of X-ray experimental data (Table S-I), Positional parameters (Table S-II), Bond distances and angles (Table S-III), Thermal parameters (U's) (Table S-IV) and Observed and calculated structure factors (Table S-V) may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftliche information $\mathrm{mbH}, \mathrm{W}-7514$ Eggenstein-Leopoldshafen 2 on quoting the depository number CSD-57350, the names of the authors, and the journal citation.

Acknowledgements

We are grateful to the Centre National de la Recherche Scientifique for support and an Associate Research position for MK and to the Commission of the European Communities for a grant to TS (contract 913014).

References and notes

[^1]3 Selected data: 2: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, TMS as external reference): $\delta-12.15$ (ddd, $2 \mathrm{H}, \mu-\mathrm{H},{ }^{2} J(\mathrm{PH})=36,34$ and $\left.10 \mathrm{~Hz},{ }^{1} J(\mathrm{PtH})=200.2 \mathrm{~Hz}\right), 7.04-7.47(\mathrm{~m}, 40 \mathrm{H}$, aromatic). Mass spectrum (FAB^{+}): $1045.9\left(\mathrm{M}^{+}, 50 \%\right), 959.9\left(\mathrm{M}^{+}-2 \mathrm{H}-\right.$ $3 \mathrm{CO}, 100 \%$).
4 (a) P. Braunstein, M. Knorr, A. Tiripicchio and M. Tiripicchio Camellini, Angew. Chem., Int. Ed. Engl., 28 (1989) 1361; (b) J. Powell, M.R. Gregg and J.F. Sawyer, J. Chem. Soc., Chem. Commun., (1987) 1029.
5 H.A. Jenkins, S.J. Loeb, D.G. Dick and D.W. Stephan, Can. J. Chem., 68 (1990) 869.
6 Complex 3a was obtained by addition of $\left[\mathrm{Fe}(\mathrm{H})\left(\mathrm{Si}(\mathrm{OMe})_{3} \mathrm{~K}(\mathrm{CO})_{3}\right.\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right](0.585 \mathrm{~g}, 1 \mathrm{mmol})$ to $\mathrm{Pt}(1,5-\mathrm{COD})_{2}(0.411 \mathrm{~g}, 1 \mathrm{mmol})$ in 3 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. After mixing with 3 ml of hexane, the deep orange solution was filtered over Celite and the solvent was removed in vacuum. Yield, 83%, yellow crystalline solid. Selected data: 3a: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}): 1983 \mathrm{~s}, 1918 \mathrm{~s}, 1901 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{4} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $\delta 2.1-2.5\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{Si}(\mathrm{OMe})_{3}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH},{ }^{2} J(\mathrm{PtH})=65 \mathrm{~Hz}\right), 6.48(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH},{ }^{2} J(\mathrm{PtH})=56 \mathrm{~Hz}\right), 7.2-7.7\left(\mathrm{~m}, 10 \mathrm{H}\right.$, aromatic). ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ ($81.02 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{H}_{3} \mathrm{PO}_{4}$ as external reference): $\delta 140.9\left(\mathrm{~s},{ }^{1} J(\mathrm{PtP})=3007 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR $\left(100.61 \mathrm{MHz}, 28^{\circ} \mathrm{C}\right.$, CDCl_{3}): $\delta 29.7\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 30.7\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 50.9\left(\mathrm{~s}, 3 \mathrm{OCH}_{3}\right), 91.8$ $\left(\mathrm{s}, 2 \mathrm{CH},{ }^{1} \mathrm{~J}(\mathrm{PIC})=116 \mathrm{~Hz}\right), 111.0\left(\mathrm{~d}, 2 \mathrm{CH},{ }^{2} J(\mathrm{PC})=5.0 \mathrm{~Hz}\right.$, $\left.{ }^{1} J(\mathrm{PtC})=46 \mathrm{~Hz}\right), 128-133$ (aromatic), $209.7\left(\mathrm{~d}, 3 \mathrm{CO},{ }^{2} J(\mathrm{PC})=\right.$ $\left.12 \mathrm{~Hz},{ }^{2} J(\mathrm{PtC})=31 \mathrm{~Hz}\right)$. Anal. found: $\mathrm{C}, 41.50 ; \mathrm{H}, 4.02$. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{FeO}_{6} \mathrm{PPtSi}(\mathrm{M}=749.52)$ calc.: $\mathrm{C}, 41.67 ; \mathrm{H}, 4.17 \%$. Selected data: 3b: Yield: 78%, yellow crystalline solid; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\nu(\mathrm{CO}): 1973 \mathrm{~s}, 1905 \mathrm{~s}, 1887 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.24-2.25\left(\mathrm{~m}, 30 \mathrm{H}, 2 \mathrm{Cy}+4 \mathrm{CH}_{2}\right), 3.72(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Si}(\mathrm{OMe})_{3}\right), 5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH},{ }^{2} \mathrm{~J}(\mathrm{PtH})=66 \mathrm{~Hz}\right), 6.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}$, ${ }^{2} J(\mathrm{PtH})=52 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR ($81.02 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 199.6\left(\mathrm{~s},{ }^{1} J(\mathrm{PtP})=2961 \mathrm{~Hz}\right)$. Anal. found: $\mathrm{C}, 41.22 ; \mathrm{H}$, 5.70. $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{FeO}_{6} \mathrm{PPtSi}(\mathrm{M}=761.61)$ calc.: $\mathrm{C}, 41.00 ; \mathrm{H}, 5.69 \%$.

7 Complex 4 was obtained by addition of an excess of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $3 \mathrm{a}(0.110 \mathrm{~g}, 0.15 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 0.5 h , the solvent was evaporated and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 0.5 \mathrm{ml})$. Selected data: 4: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2090 \mathrm{vs}, 2041 \mathrm{~s}, 2027 \mathrm{~s}$ $\mathrm{cm}{ }^{1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta-11.84(\mathrm{~d}, 2 \mu-\mathrm{H}$, $\left.{ }^{2} J(\mathrm{PH})=40 \mathrm{~Hz},{ }^{1} J(\mathrm{PtH})=322 \mathrm{~Hz}\right), 2.6-2.7\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 5.28$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH},{ }^{1} J(\mathrm{PtH})=70 \mathrm{~Hz}\right), 6.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH},{ }^{1} J(\mathrm{PtH})=50 \mathrm{~Hz}\right)$, $7.2-7.6\left(\mathrm{~m}, 10 \mathrm{H}\right.$, aromatic). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(81.02 \mathrm{MHz}, 28^{\circ} \mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 157.1$ (s, $\left.\mu-\mathrm{P},{ }^{1} J(\mathrm{PtP})=2290 \mathrm{~Hz}\right)$.
8 (a) G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W. Oberkirch, K. Tanaka, E. Steinrücke, D. Walter and H. Zimmermann, Angew. Chem., 78 (1966) 157; (b) P. Braunstein, T. Faure, M. Knorr, F. Balegroune and D. Grandjean, J. Organomet. Chem., in press.
9 Clusters 5: They were obtained as yellow crystals by layering a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with pentane at low temperature. Selected data: 5a: IR (KBr): $\nu(\mathrm{CO}) 1980 \mathrm{vs}, 1924 \mathrm{~s}, 1900$ sh cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $\delta 1.50-2.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 4.85(\mathrm{~s}, 2 \mathrm{H}$, $\left.2 \mathrm{CH},{ }^{2} J(\mathrm{PtH})=67 \mathrm{~Hz}\right), 6.9-8.0(\mathrm{~m}, 42 \mathrm{H}, 2 \mathrm{CH}$ and aromatic). ${ }^{31} \mathrm{P}\left\{{ }^{(} \mathrm{H}\right\}$ NMR $\left(81.02 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-143.8$ (spt, $\left.\mathrm{PF}_{6},{ }^{1} J(\mathrm{PF})=713 \mathrm{~Hz}\right), 43.7\left(\mathrm{~d}, \mathrm{P}(\mathrm{Au}),{ }^{3} J(\mathrm{PP})=15 \mathrm{~Hz}\right.$, $\left.{ }^{2} J(\mathrm{PtP})=195 \mathrm{~Hz}\right), 154.9\left(\mathrm{t}, \mu-\mathrm{P},{ }^{3} J(\mathrm{PP})=15 \mathrm{~Hz},{ }^{1} J(\mathrm{PtP})=2484\right.$ Hz). Anal. found: $\mathrm{C}, 42.15 ; \mathrm{H}, 3.07 . \mathrm{C}_{59} \mathrm{H}_{52} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{FeO}_{3} \mathrm{P}_{4} \mathrm{Pt}$ ($\mathrm{M}=1691.87$) calc.: C, $41.88 ; \mathrm{H}, 3.10 \%$.

5b: Suitable crystals for X-ray diffraction were obtained from a mixturc $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} /$ pentanc. mp. $=154-156^{\circ} \mathrm{C}$ (decomp.). IR (KBr): ν (CO) 1973 vs, $1915 \mathrm{~s}, 1880 \mathrm{sh} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, 28^{\circ} \mathrm{C}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.8-2.4\left(\mathrm{~m}, 30 \mathrm{H}\right.$, aliphatic), $5.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH},{ }^{2} J(\mathrm{PtH})=\right.$ $64 \mathrm{~Hz}), 6.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH},{ }^{2} \mathrm{~J}(\mathrm{PtH})=44 \mathrm{~Hz}\right), 7.4-7.5(\mathrm{~m}, 30 \mathrm{H}$,
aromatic). ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR ($\left.81.02 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ -143.7 (spt, $\left.\mathrm{PF}_{6},{ }^{1} J(\mathrm{PF})=713 \mathrm{~Hz}\right), 44.0\left(\mathrm{~d}, \mathrm{P}(\mathrm{Au}),{ }^{3} J(\mathrm{PP})=16\right.$, $\left.{ }^{2} J(\mathrm{PtP})=214 \mathrm{~Hz}\right), 211.0\left(\mathrm{t}, \mu-\mathrm{P},{ }^{3} J(\mathrm{PP})=16 \mathrm{~Hz},{ }^{1} J(\mathrm{PtP})=2370\right.$ Hz). Mass spectrum (FAB^{+}): $1558.1\left(\mathrm{M}^{+}, 100 \%\right), 1366.0\left(\mathrm{M}^{+}-\right.$ $1,5-\mathrm{COD}-\mathrm{Cy}, 60 \%), 1103.9\left(\mathrm{M}^{+}-1,5-\mathrm{COD}-\mathrm{Cy}-\mathrm{PPh}_{3}, 40 \%\right)$, $721.1\left(\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, 46 \%\right), 459.0\left(\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}, 50 \%\right)$. Anal. found: $\mathrm{C}, 41.56 ; \mathrm{H}, 3.53 . \mathrm{C}_{59} \mathrm{H}_{64} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{FeO}_{3} \mathrm{P}_{4} \mathrm{Pt}(\mathrm{M}=1703.99)$ calc.: C, $41.58 ; \mathrm{H}, 3.79 \%$.
10 Crystal data: $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{FeO}_{3} \mathrm{P}_{4} \mathrm{Pt}$ (5b) $\mathrm{M}=1703.9$, monoclinic, space group $P 2_{1} / n, a=22.479(6), b=26.781(8), c=$ $10.254(3) \AA, \beta=102.94(2)^{\circ}, U=6016.1 \AA^{3}, Z=4, \rho($ calc $)=1.881$ $\mathrm{g} \mathrm{cm}^{-3}, \mu=75.97 \mathrm{~cm}^{-1}$, Enraf-Nonius CAD-4 diffractometer, $\lambda=0.7107 \AA$ A. 11434 independent $\pm h,+k,+l$ reflections were measured ($2<\theta<24^{\circ}$) at $20^{\circ} \mathrm{C}$ for which 5022 reflections with $I>3 \sigma(I)$ were treated and observed. $R(F)=0.051, R_{w}(F)=$ $0.069, \mathrm{GOF}=1.675$.
11 K. Burgess, B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and S.N.A.B. Syed-Mustaffa, J. Chem. Soc., Chem. Commun., (1983) 455.

12 J.T. Lin, Y.-M. Hsiao, L.-K. Liu and S.K. Yeh, Organometallics, 7 (1988) 2065.

13 R. Bender, P. Braunstein, J.-L. Richert and Y. Dusausoy, New J. Chem., 14 (1990) 569.

14 D.M.P. Mingos and M.J. Watson, Adv. Inorg. Chem., 39 (1992) 327.

15 I. Omae, Coord. Chem. Rev., 51 (1983) 1, and references therein.
16 A.M. Mueting, W. Bos, B.D. Alexander, P.D. Boyle, J.A. Casalnuovo, S. Balaban, L.N. Ito, S.M. Johnson and L.H. Pignolet, New J. Chem., 12 (1988) 505.

17 (a) E. Kunz, M. Knorr, J. Willnecker and U. Schubert, New J. Chem., 12 (1988) 467; (b) U. Schubert, J. Organomet. Chem., 358 (1988) 215.

18 Selected data: 6: Yield: 88%, orange crystalline solid; IR (KBr): $\nu(\mathrm{CO}): 2067 \mathrm{~s}, 2016 \mathrm{~m}, 1992 \mathrm{vs}, 1960 \mathrm{~s}, 1893 \mathrm{~m}, 1867 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300.14 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $\delta-7.09$ (ddd, $1 \mathrm{H},{ }^{2} J(\mathrm{PH})=92$ $\left.\mathrm{Hz},{ }^{2} J(\mathrm{PH})=26 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{PH})=7 \mathrm{IIz},{ }^{\mathrm{t}} \mathrm{J}(\mathrm{PtII})=462 \mathrm{~Hz}\right), 3.50(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{Si}(\mathrm{OMe})_{3}\right), 3.69\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}(\mathrm{OMe})_{3}\right), 3.95\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right.$, $\left.{ }^{2} J(\mathrm{PH})=10 \mathrm{~Hz},{ }^{3} J(\mathrm{PtH})=49 \mathrm{~Hz}\right), 6.9-7.3(\mathrm{~m}, 30 \mathrm{H}$, aromatic). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.5 \mathrm{MHz}, 28^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$): $\delta 28.8$ (d, $\mathrm{P}(\mathrm{Pt})$, $\left.{ }^{2+3} J(\mathrm{PP})=86 \mathrm{~Hz},{ }^{1} J(\mathrm{PtP})=3790 \mathrm{~Hz}\right), 63.3\left(\mathrm{~d}, \mathrm{P}(\mathrm{Fe}),{ }^{2+3} J(\mathrm{PP})=\right.$ $\left.81 \mathrm{~Hz},{ }^{2} J(\mathrm{PtP})=80 \mathrm{~Hz}\right), 149.2\left(\mathrm{~s},(\mu-\mathrm{P}),{ }^{1} J(\mathrm{PtP})=1985 \mathrm{~Hz}\right)$. Anal. found: $\mathrm{C}, 45.60 ; \mathrm{H}, 4.07 . \mathrm{C}_{49} \mathrm{H}_{51} \mathrm{Fe}_{2} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{PtSi}_{2}(\mathrm{M}=1287.87)$ calc.: C, $45.69 ; \mathrm{H}, 4.00 \%$.

[^1]: 1 (a) T. Blum, P. Braunstein, A. Tiripicchio and M. Tiripicchio Camellini, New J. Chem., 12 (1988) 539; (b) T. Blum and P. Braunstein, Organometallics, 8 (1989) 2497; (c) P. Braunstein, E. de Jesús, A. Tiripicchio and F. Ugozzoli, Inorg. Chem., 31 (1992) 411; (d) R. Bender, P. Braunstein, A. Dedieu and Y. Dusausoy, Angew. Chem., Int. Ed. Engl., 28 (1989) 923 and references cited.
 2 (a) P. Braunstcin, M. Knorr, B. Hirle, G. Reinhard and U. Schubert, Angew. Chem., Int. Ed. Engl., 31 (1992) 1583; (b) G. Reinhard, M. Knorr, P. Braunstein, U. Schubert, S. Khan, C.E. Strouse, H.D. Kaesz and A. Zinn, Chem. Ber., 126 (1993) 17.

